Terms and formulas

The following list contains all predefined statements (formulas) and object expressions (terms) together with (typical) corresponding textbook expressions.

Formulas

\(\LaTeX\)\(\small\mathbb M\)AThcomment
\(E\wedge F\)E and F
\(E\vee F\)E or F
\(E\Rightarrow F\)E => F
\(E\Leftrightarrow F\)E <=> F
\(\neg E\)not(E)
\(x=y\)x = y
\(x\neq y\)x /= y
\(x\in U\)x : U
\(x\notin U\)x /: U
\(U\subseteq V\)U c= V
\(\forall p\in U: E\)[forall p:U holds E]variants
\(\exists p\in U: E\)[exists p:U sothat E]variants
\(\exists! p\in U: E\)[exists! p:U sothat E]variants
\(\exists_{\leq 1} p\in U: E\)[! p:U sothat E]variants
\(\top\)tautology
\(\bot\)contradiction

Terms

\(\LaTeX\)\(\small\mathbb M\)AThcomment
\(\mathbb N_0\)Nat0
Elementall elements
Setall sets
Functionall functions
Basicall basic elements
\(42\)42decimal representations
\((38,50,50,47)\)"cool"strings
\(\{3,8,2,11\}\){3,8,2,11}
\(\emptyset\){ }
\((3,8,2,11)\)[3,8,2,11]
\(\{p\in U:E\}\){p:U sothat E}variants
\(\{y\,|\,p\in U\}\){y for p:U}variants
\((y)_{p\in U}\)[y for p:U]variants
\(U\backslash V\)U\Vset difference
\(U\to V\)U --> V
\(U\rightharpoonup V\)U -->> Vpartial functions
\(U^n\)U^ntuple
\(\mathcal P(U)\)pow(U)power set
\(\bigcup_{p:U}V\)union(V for p:U)variants
\(\bigcap_{p:U}V\)sec(V for p:U)variants
\(\prod_{p:U}V\)prd(V for p:U)variants
\(\textrm{dom}(f)\)dom(f)
\(\textrm{img}(f)\)img(f)
\(f(x)\)f(x)function evaluation
\(\iota x\in U:E\)[the x:U sothat E]definite description
entry(U)element of a singleton